Войти  |  Регистрация
Авторизация

Нагрузки и воздействия на стальные конструкции многоэтажные здания



Нагрузки и воздействия на многоэтажные здания определяются на основании задания на проектирование, глав СНиП, руководств и справочников.
Постоянные нагрузки

Постоянные нагрузки практически не изменяются во времени и поэтому учитываются во всех вариантах загружения для рассматриваемой в расчете стадии работы конструкции.
К постоянным нагрузкам относятся: вес несущих и ограждающих конструкций, вес и давление грунтов, воздействия предварительного напряжения конструкций. Постоянными можно считать условно и нагрузки от веса стационарного оборудования и инженерных коммуникаций, имея, однако, в виду, что в некоторых условиях (ремонт, перепланировка) они могут изменяться.
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Нормативные значения постоянных нагрузок определяются по данным о весе готовых элементов и изделий или вычисляются по проектным размерам конструкций и плотности материалов (табл. 19.2) (плотности, равной 1 кг/м3, соответствует удельный вес, равный 9,81 Н/м3=0,01 кН/м3).
Нагрузка от веса несущих стальных конструкций. Эта нагрузка зависит от вида и размеров конструктивной системы, прочности используемой стали, приложенных внешних нагрузок и других факторов.
Нормативная нагрузка (кН/м2 площади перекрытий) от веса несущих конструкций из стали класса С38/23 приближенно равна
Нагрузки и воздействия на стальные конструкции многоэтажные здания

При расчете ригелей и балок перекрытий учитывается часть нагрузки g, равная (0,3+6/mэт)g — для рамных систем, (0,2+4/mэт)g — для связевых систем, где mєт — число этажей здания, mэт>20.
Для несущих конструкций из сталей класса С38/23 с расчетным сопротивлением R и более высокого класса с расчетным сопротивлением R' нагрузка от их веса определяется соотношением
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Нагрузка от веса стен и перекрытий. Нормативное значение веса 1 м2 стены, перекрытия составляет приближенно: а) для наружных стен из облегченной кладки или бетонных панелей 2,5—5 кН/м2, из эффективных панелей 0,6—1,2 кН/м2; б) для внутренних стен и перегородок на 30—50% меньше, чем для наружных; в) для несущей плиты перекрытия вместе с полом при железобетонных панелях и настилах 3—5 кН/м2, при монолитных плитах из легкого бетона по стальному профилированному настилу 1,5—2 кН/м2; с добавлением при необходимости нагрузки от подвесного потолка 0,3—0,8 кН/м2,
При вычислении расчетных нагрузок от веса многослойных конструкций принимают, если необходимо, свои коэффициенты перегрузки для разных слоев.
Нагрузку от веса стен и постоянных перегородок учитывают по фактическому ее положению. Если сборные элементы стен прикрепляются непосредственно к колоннам каркаса, при расчете перекрытий вес стен не учитывается.
Нагрузку от веса переставляемых перегородок прикладывают к элементам перекрытия в наиболее неблагоприятном для них положении. При расчете колонн эта нагрузка обычно осредняется по площади перекрытий.
Нагрузки от веса перекрытия распределены практически равномерно и при расчете элементов перекрытия и колонн собираются с соответствующих грузовых площадей.
В современных многоэтажных зданиях со стальным каркасом интенсивность суммы нормативных нагрузок от веса стен и перекрытий, отнесенная к 1 м2 перекрытий, ориентировочно равна 4—7 кН/м2. Отношение всех постоянных нагрузок здания (включая собственный вес стальных конструкций, плоских и пространственных ферм жесткости) к его объему изменяется в пределах от 1,5 до 3 кН/м3.
Временные нагрузки

Временные нагрузки на перекрытия. Нагрузки на перекрытия, обусловленные весом людей, мебели и подобного легкого оборудования, устанавливаются в СНиП в виде эквивалентных нагрузок, равномерно распределенных по площади помещений. Их нормативные значения для жилых и общественных зданий составляют: в основных помещениях 1,5—2 кН/м2; в залах 2—4 кН/м2; в вестибюлях, коридорах, лестницах 3—4 кН/м2, а коэффициенты перегрузки — 1,3—1,4.
Согласно пп. 3.8, 3.9 СНиП временные нагрузки принимаются с учетом понижающих коэффициентов α1, α2 (при расчете балок и ригелей) и η1, η2 (При расчете колони и фундаментов). Коэффициенты η1, η2 относятся к сумме временных нагрузок на нескольких перекрытиях и учитываются при определении продольных сил. Узловые изгибающие моменты в колоннах следует принимать без учета коэффициентов η1, η2 так как основное влияние на изгибающий момент оказывает временная нагрузка на ригелях одного, примыкающего к узлу перекрытия.
Рассматривая возможные схемы расположения временных нагрузок на перекрытиях здания, в проектной практике обычно исходят из принципа наиболее неблагоприятного загружения. Например, для оценки наибольших пролетных моментов в ригеле рамной системы учитывают схемы шахматного расположения временных нагрузок, в расчете рам, стволов жесткости и фундаментов принимают во внимание не только сплошное загружение всех перекрытий, но и возможные варианты частичного, в том числе одностороннего, загружения. Некоторые из таких схем очень условны и приводят к неоправданным запасам в конструкциях и основаниях.
Снеговая нагрузка, определяемая по указаниям СНиП, имеет в основном значение для конструкций покрытия многоэтажного здания и мало влияет на суммарные усилия в ниже расположенных конструкциях.
Ветровая нагрузка. Работа конструкций многоэтажного здания, их жесткость, прочность и устойчивость существенно зависят от правильности учета ветровой нагрузки.
Согласно расчетное значение статической составляющей ветровой нагрузки, кН/м2, определяется по формуле
Нагрузки и воздействия на стальные конструкции многоэтажные здания

В практических расчетах нормативную эпюру коэффициента kz заменяют трапециевидной с нижней и верхней ординатами kн≥kв, определяемыми из условий эквивалентности эпюр по моменту и поперечной силе в нижнем сечении здания. С погрешностью не более 2% ординату kн можно считать фиксированной и равной нормативной (1 — для местности типа А; 0,65 — для местности типа Б), а для kв принимать в зависимости от высоты здания и типа местности следующие значения:
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Ордината на уровне z:kzэ = kн+(kв-kн) z/H. В здании ступенчатой формы (рис. 19.1) нормативная эпюра приводится к трапециевидной по отдельным зонам разной высоты, отсчитываемой от низа здания. Возможны способы приведения и с иным членением здания на зоны.
Нагрузки и воздействия на стальные конструкции многоэтажные здания

При расчете здания в целом статическая составляющая ветровой нагрузки, кН, в направлении осей х и у (рис, 19.2) на 1 м высоты определяется как результирующая аэродинамических сил, действующих в этих направлениях, и выражается через коэффициенты общего сопротивления сх, сy и горизонтальные размеры В, L проекций здания на плоскости, перпендикулярные соответствующим осям:
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Для зданий призматической формы с прямоугольным планом при угле скольжения β=0 коэффициент су=0, а сx определяется по табл. 19.1, составленной с учетом данных зарубежных и отечественных исследований и норм.
Если β=90°, то cx=0, а значение сy находят по той же таблице, поменяв местами обозначения В, L на плане здания.
При ветре под углом β=45° значения сx, сy приведены в виде дроби в табл. 19.2, при этом более длинной считается сторона плана В, перпендикулярная оси х. Вследствие неравномерного распределения давления ветра на стены при β=45° и B/L≥2 следует учитывать возможный аэродинамический эксцентриситет в приложении нагрузки qxc, перпендикулярной более длинной стороне, равный 0,15 В, и сответствующий крутящий момент с интенсивностью, кН*м на 1 м высоты
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Если на здании есть лоджии, балконы, выступающие вертикальные ребра, к нагрузкам qxc, qyc следует добавить силы трения на обеих стенах, параллельных оси х, у, равные:
Нагрузки и воздействия на стальные конструкции многоэтажные здания

При угле β=45° эти силы действуют только в плоскости наветренных стен, и вызываемые ими крутящие моменты с интенсивностью mкр'' = 0,05q(z)LB уравновешиваются. Ho если одна из наветренных стен гладкая, момент mкр'' от сил трения на другой стене нужно учесть. Аналогичные условия возникают при
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Если геометрический центр плана здания не совпадает с центром жесткости (или центром кручения) несущей системы, в расчете необходимо учесть дополнительные эксцентриситеты приложения ветровых нагрузок.
Ветровую нагрузку на элементы наружной стены, ригели связевых и рамно-связевых систем, передающие давление ветра от наружной стены на диафрагмы и стволы жесткости, определяют по формуле (19.2), пользуясь коэффициентами давления с+, с- (положительное давление направлено внутрь здания) и нормативными значениями kz. Коэффициенты давления для зданий с прямоугольным планом (с некоторым уточнением данных СНиП):
Нагрузки и воздействия на стальные конструкции многоэтажные здания

В случае β=0 для обеих стен, параллельных потоку маются значения су, равные:
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Эти же данные используют при 0=90° для сх, поменяв местами обозначения В, L на плане здания.
Для расчета того или иного элемента следует выбрать наиболее неблагоприятные из приведенных значений с+ и с- и увеличить их по абсолютной величине на 0,2 для учета возможного внутреннего давления в здании. Необходимо считаться с резким возрастанием отрицательных давлений в угловых зонах зданий, где с-=-2, особенно при расчете облегченных стен, стекла, их креплений; при этом ширину зоны по имеющимся данным следует увеличить до 4—5 м, но не более 1/10 длины стены.
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Влияние окружающей застройки, усложнения формы зданий на аэродинамические коэффициенты устанавливается экспериментально.
При действии ветрового потока возможны: 1) боковое раскачивание аэродинамически неустойчивых гибких зданий (вихревое возбуждение ветрового резонанса зданий цилиндрической, призматической и слабо пирамидальной формы; галопирование зданий плохо обтекаемой формы, связанное с резким изменением боковой возмущающей силы при малых изменениях направления ветра и с неблагоприятным соотношением жесткостей здания при изгибе и кручении), и руководство; 2) колебания здания в плоскости потока при пульсациониом воздействии порывистого ветра. Колебания первого типа могут быть более опасными, особенно при наличии соседних высоких зданий, но методы их учета разработаны недостаточно и для оценки условий их возникновения необходимы испытания крупных аэроупругих моделей.
Динамическая составляющая ветровой нагрузки при колебаниях здания в плоскости потока зависит от изменчивости пульсаций скорости vп, характеризуемой стандартом σv (рис.19.3). Скоростной напор ветра в момент времени t при плотности воздуха р
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Для учета крайних значений пульсаций принято vп=2,5σv, что соответствует (при нормальной функции распределения) вероятности превышения принятой пульсации в произвольный момент времени около 0,006.
Наибольший вклад в динамические усилия и перемещения вносят пульсации, частота которых близка или равна частоте собственных колебаний системы. Возникающие инерционные силы и определяют динамическую составляющую ветровой нагрузки, учитываемую согласно СНиП для зданий высотой более 40 м в предположении, что форма собственных колебаний здания описывается прямой линией,
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Поскольку погрешность в оценке Т1 незначительно влияет на ξ1 можно рекомендовать для стальных рамных каркасов T1=0,1mэт, для связевых и рамно-связевых каркасов с железобетонными диафрагмами и стволами жесткости T1=0,06 mэт, где mэт — число этажей здания.
Пренебрегая небольшими отклонениями коэффициента формы ϗ от прямой линии, для суммарной ветровой нагрузки (статической и динамической) в зданиях постоянной ширины принимают трапециевидную эпюру, ординаты которой:
Нагрузки и воздействия на стальные конструкции многоэтажные здания

В зависимости от рассматриваемого направления ветра, принятых для qс значений (расчетные, нормативные) и размерностей (кН/м2, кН/м) получают соответствующие суммарные нагрузки.
Ускорение горизонтальных колебаний верха здания, необходимое для расчета по второй группе предельных состояний, определяется делением нормативного значения динамической составляющей (без учета коэффициента перегрузки) на соответствующую массу. Если расчет ведется на нагрузку qх, кН/м (рис. 19.2), то
Нагрузки и воздействия на стальные конструкции многоэтажные здания

Значение m оценивается делением постоянных нагрузок и 50% временных вертикальных нагрузок, отнесенных к 1 м2 перекрытия, на ускорение свободного падения.
Ускорения от нормативных значений ветровой нагрузки превышаются в среднем раз в пять лет. Если признается возможным снизить период повторяемости до года (или месяца), то к значению нормативного скоростного напора q0 вводится коэффициент 0,8 (или 0,5).
Сейсмические воздействия. При строительстве многоэтажных зданий в сейсмических районах несущие конструкции необходимо рассчитать как на основные сочетания, состоящие из обычно действующих нагрузок (включая ветровую), так и на особые сочетания с учетом сейсмических воздействий (но исключая ветровую нагрузку). При расчетной сейсмичности более 7 баллов расчет на особые сочетания нагрузок является, как правило, определяющим.
Расчетные сейсмические силы и правила их совместного учета с другими нагрузками принимаются по СНиП. С увеличением периода собственных колебаний здания сейсмические силы, в отличие от динамической составляющей ветровой, нагрузки, снижаются или не изменяются. Для более точной оценки периодов собственных колебаний при учете сейсмических воздействий можно использовать способы.
Температурные воздействия. Изменение температуры окружающего воздуха и солнечная радиация вызывают температурные деформации элементов конструкции: удлинение, укорочение, искривление.
На стадии эксплуатации многоэтажного здания температура внутренних конструкций практически не изменяется. Сезонные и суточные изменения температуры наружного воздуха и солнечной радиации влияют прежде всего на наружные стены. Если их прикрепление к каркасу не препятствует температурным деформациям стены, каркас не будет испытывать дополнительных усилий. В случаях, когда основные несущие элементы (например, колонны) частично или полностью вынесены за грань наружной стены, они непосредственно подвергаются температурным климатическим воздействиям, которые необходимо учесть при проектировании каркаса.
Температурные воздействия на стадии возведения или принимают с грубыми допущениями из-за неопределенности температуры замыкания конструкций, или пренебрегают ими, учитывая снижение во времени вызванных ими усилий вследствие неупругих деформаций в узлах и элементах несущей системы.
Влияние температурных климатических воздействий на работу несущей системы в многоэтажных зданиях с металлическим каркасом изучено недостаточно.
Добавить комментарий
Ваше Имя:
Ваш E-Mail:
  • bowtiesmilelaughingblushsmileyrelaxedsmirk
    heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
    winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
    worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
    expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
    disappointedconfoundedfearfulcold_sweatperseverecrysob
    joyastonishedscreamtired_faceangryragetriumph
    sleepyyummasksunglassesdizzy_faceimpsmiling_imp
    neutral_faceno_mouthinnocent